Corrosion behaviour of reinforcement in seawater concrete

E. Redaelli, M. Carsana, M. Gastaldi, F. Lollini, F. Torabian Isfahani, L. Bertolini
Politecnico di Milano
Dept. Chemistry, Materials and Chemical Engineering “G. Natta”
E-mail: elena.redaelli@polimi.it
Website: mcd.chem.polimi.it
Introduction

- Use of seawater for r.c. structures is prohibited
 (seawater ~ 21000 ppm Cl\(^-\) $\rightarrow \sim 4$ kg Cl\(^-\) per m\(^3\) concrete $\rightarrow \sim 1.3\%$ Cl\(^-\) by weight cement)

- Need to reduce environmental impact of concrete production

- Can seawater be used in combination with corrosion resistant reinforcement?

Effect of mixed-in chlorides on reinforced concrete

Elena Redaelli

XM-28
304L
22-05
23-04

GFRP

POLITECNICO MILANO 1863
SEACON aims at demonstrating the safe utilization of seawater and salt-contaminated aggregates for a sustainable concrete production when combined with non-corrosive reinforcement to construct durable and economical concrete infrastructures.

- Laboratory tests
- LCA/LCC
- Real-size demonstration projects (i.e., Italy and Florida, USA) to provide the opportunity for **long-term** performance monitoring
Objectives of WP4 - Italy

- Design, construct and monitor a demo-project utilizing seawater concrete with both stainless steel and GFRP reinforcement
- Monitor the long-term durability behaviour (beyond the end of the SeaCon project)

Participants:
- Politecnico di Milano
- Buzzi Unicem
- Pavimental
- Acciaierie Valbruna
- ATP

XIV Congresso AIMAT 2017
Ischia Porto (Na), 12-15 luglio 2017
- Asphalt production unit of Pavimental in Pontenure (PC)
- Next to A1 motorway (Piacenza Sud)
Description of r.c. culvert

- Runs parallel to road
- Collects waste water (de-icing salts)
- 30 m long, divided into six individual segments, 5 m each
Scenarios and exposure conditions

- Each segment is representative of a combination of a type of concrete and a type of reinforcement
- Macro-climatic conditions: unsheltered, wetting/drying cycles
- Both carbonation and chloride penetration

<table>
<thead>
<tr>
<th>Segment</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reinforcement</td>
<td>Carbon steel</td>
<td>Carbon steel</td>
<td>SS 304 (1.4311)*</td>
<td>SS 23-04 (1.4362)*</td>
<td>GFRP**</td>
<td>Carbon steel</td>
</tr>
<tr>
<td>Concrete</td>
<td>Reference</td>
<td>SeaCon (seawater)</td>
<td>SeaCon (seawater)</td>
<td>SeaCon (seawater)</td>
<td>SeaCon (seawater)</td>
<td>RAP</td>
</tr>
</tbody>
</table>

* supplied by Acciaierie Valbruna ** supplied by ATP
Concrete compositions (from Buzzi)

XIV Congresso AIMAT 2017
Ischia Porto (Na), 12-15 luglio 2017

<table>
<thead>
<tr>
<th>Dosage (kg/m³)</th>
<th>Reference concrete (A)</th>
<th>SeaCon concrete (BCD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEM II/A-LL 42.5R</td>
<td>335</td>
<td>335</td>
</tr>
<tr>
<td>Fly ash</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Sand 0-5 mm</td>
<td>800</td>
<td>800</td>
</tr>
<tr>
<td>Gravel 5-7 mm</td>
<td>365</td>
<td>365</td>
</tr>
<tr>
<td>Gravel 8-15 mm</td>
<td>630</td>
<td>630</td>
</tr>
<tr>
<td>Superplasticiser Addiment T75</td>
<td>2.19</td>
<td>2.19</td>
</tr>
<tr>
<td>Retarding agent VZ53</td>
<td>-</td>
<td>0.76</td>
</tr>
<tr>
<td>Water</td>
<td>175</td>
<td>-</td>
</tr>
<tr>
<td>Seawater</td>
<td>-</td>
<td>175</td>
</tr>
</tbody>
</table>

Elena Redaelli
POLITECNICO MILANO 1863
Probes for corrosion monitoring

- SSC reference electrode for potential monitoring
- Multiple-reinforcement probes
- Electrical resistivity probes

Silver – silver chloride (SSC) reference electrode

Multiple-reinforcement probe

Resistivity probe
Summary of electrical connections

<table>
<thead>
<tr>
<th>Segment</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reinforcement</td>
<td>Carbon steel</td>
<td>Carbon steel</td>
<td>SS 304</td>
<td>SS 23-04</td>
</tr>
<tr>
<td>Concrete</td>
<td>Reference</td>
<td>SeaCon (seawater)</td>
<td>SeaCon (seawater)</td>
<td>SeaCon (seawater)</td>
</tr>
<tr>
<td>Rebar</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td>SSC-Ref</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td>Ti-Ref</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td>Res-probe</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td>Ti-mesh</td>
<td>-</td>
<td>V</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Multi-probe</td>
<td>V</td>
<td>V</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Activated titanium mesh

Box for electrical connections
Execution of the culvert (1)

- Placing of reinforcement mesh
- Installation of probes

Carbon steel and 304 stainless steel meshes (segments B and C)

Multiple-reinforcement probe (segment B)

Single probes (segment C)
Execution of the culvert (2)

Concrete casting, compaction and curing

- Pouring of reference concrete (segment A)
- Compaction of SeaCon concrete (segment C)
- Curing of culvert (24 hours)
The culvert

- Completed by end of November 2016
- Measurement of potential of reinforcement and probes (manual and datalogger)
- Measurement of electrical resistivity of concrete
- Potential mappings vs. external reference electrode
Potential of reinforcement vs. embedded SSC reference electrode

Potential of carbon steel in reference and seawater concretes

Potential of stainless steels in seawater concrete

Elena Redaelli

POLITECNICO MILANO 1863
Comparison with laboratory data in similar exposure conditions

Potential of carbon steel in reference and seawater concretes

Potential of stainless steels in seawater concrete

Elena Redaelli

POLITECNICO MILANO 1863
• Potential of reinforcement vs. embedded SSC reference electrode
• Evolution of electrical resistivity of concrete on-site

Concrete resistivity at the depth of the reinforcement (~30 mm)
The results of monitoring of corrosion conditions of the reinforcement in the culvert during the first 7 months of exposure indicate that:
- Rebar potentials are in agreement with those obtained on reinforced specimens in the lab in similar conditions of exposure.
- Stainless steel rebars in seawater concrete show similar behavior as carbon steel in reference concrete.
- Datalogger will allow monitoring the potential of reinforcement virtually continuously, reducing the on-site inspections.
- Future analyses of chloride profiles and depth of carbonation will allow a better understanding the corrosion behaviour.
Grazie!

elena.redaelli@polimi.it